

Containers
Part Two

Outline for Today
● Lexicon

● Storing a collection of words.
● Set

● Storing a group of whatever you’d like.
● Map

● A powerful, fundamental container.

Lexicon

Lexicon
● A Lexicon is a container that stores a collection of

words.
● The Lexicon is designed to answer the following

question efficiently:
Given a word, is it contained in the Lexicon?

● The Lexicon does not support access by index. You
can’t, for example, ask what the 137th English
word is.

● However, it does support questions of the form
“does this word exist?” or “do any words have this
as a prefix?”

Tautonyms
● A tautonym is a word formed by

repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?

Time-Out for Announcements!

Sections
● Discussion sections start this week!

● Didn’t sign up for a section? You can sign up for any
section that has an open slot by visiting the CS198
website (cs198.stanford.edu).

● If your section time doesn’t work for you, you can also
switch into any section with available space. Visit
cs198.stanford.edu to do this.

● Reminder: Section attendance and participation
forms part of your course grade. (Also, if you don’t
have a section, none of your work will be graded!)

● Reminder: We don’t look to Axess enrollments; you
need to have a section assigned through our system.

Late Policy
● Everyone has four free “late days” that

can be used to extend assignment
deadlines.

● Each late day grants an automagic 24-
hour extension on an assignment.

● You can use at most two late days per
assignment; nothing will be accepted more
than 48 hours after the normal deadline.

● Check the syllabus for more information.

Assignment Grading
● Your coding assignments are graded on both functionality and on

coding style.
● The functionality score is based on correctness.

● Do your programs produce the correct output?
● Do they work on all inputs?
● etc.

● The style score is based on how well your program is written.
● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

● We have a style guide up the course website, as well as a pre-submit
checklist to make sure everything is ready to go before you formally
submit. Check these out – they’re very useful!

▶

Set

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.
Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

values -= 106;
values -= 103; // Has no effect

137

42

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

● You may find it helpful to
interpret += as “ensure
this item is there” and -=
as “ensure this item isn’t
there.”

137

42

271

Set

● Sets make it easy to
check if you’ve seen
something before.

● You can loop over the
contents of a set with a
range-based for loop.
if (values.contains(137)) {
 cout << "<(^_^)>" << endl;
}

for (int value: values) {
 cout << value << endl;
}

137

42

271

Operations on Sets
● You can add a value to a Set by writing

set += value;
● You can remove a value from a Set by writing

set -= value;
● You can check if a value exists in a Set by writing

set.contains(value)
● Many more operations are available (union,

intersection, difference, subset, etc.). Check the
Stanford C++ Library Reference guide for
details!

Application: Word Economy
● Some long words are use few distinct

letters.
● “caracara” has length eight, but only uses the

letters c, r, and a.
● The character efficiency of a word is the

ratio of its length to the number of different
letters it contains.
● “caracara” has efficiency ⁸/₃ ≈ 2.67.

● What is the highest-efficiency English word?

Map

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

cout << heights["Chile"] << endl;

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● We can loop over

the keys in a map
with a range-
based for loop.

● We can check
whether a key is
present in the
map.

for (string key: heights) {
 cout << heights[key] << endl;
}

if (heights.containsKey("Mali") {
 cout << "BCEAO" << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values

What’d I Say?
● Our program will prompt the user to

repeatedly type in text.
● Each time, we’ll report how many

previous times the user has typed in that
text.

● We’ll use a Map to track frequencies!

Map Autoinsertion
● If you look up

something in a Map using
square brackets,
● if the key already exists,

its associated value is
returned; and

● if the key doesn’t exist,
it’s added in with a
“sensible default” value,
and that value is then
returned.

● This can take some
getting used to, but it’s
surprisingly convenient.

Type Default

int 0

double 0.0

bool false

string ""

Any Container Empty container
of that type

char (it's
complicated)

Grouping by First Letters

Grouping by First Letters

atlatl

axolotl

…

ballista

barrista

creche

ceviche

…

…

A

B

C

Your Action Items
● Read Chapter 5.

● It’s all about container types, and it’ll fill in any
remaining gaps from this week.

● Read the Style Guide
● Coding style is important! We want to be clear

with our expectations.
● Keep Working on Assignment 1.

● If you’re following our recommended timetable,
you’ll have finished Debugger Warmups and Fire
at this point and will be working on Only Connect.

Next Time
● Stacks and Queues

● Specialized containers for specialized
sequences.

● Applications to text analysis and music.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

