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Part Two



  

Outline for Today
● Lexicon

● Storing a collection of words.
● Set

● Storing a group of whatever you’d like.
● Map

● A powerful, fundamental container.



  

Lexicon



  

Lexicon
● A Lexicon is a container that stores a collection of 

words.
● The Lexicon is designed to answer the following 

question efficiently:
Given a word, is it contained in the Lexicon?

● The Lexicon does not support access by index. You 
can’t, for example, ask what the 137th English 
word is.

● However, it does support questions of the form 
“does this word exist?” or “do any words have this 
as a prefix?”



  

Tautonyms
● A tautonym is a word formed by 

repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?



  

Time-Out for Announcements!



  

Sections
● Discussion sections start this week!

● Didn’t sign up for a section? You can sign up for any 
section that has an open slot by visiting the CS198 
website (cs198.stanford.edu).

● If your section time doesn’t work for you, you can also 
switch into any section with available space. Visit 
cs198.stanford.edu to do this.

● Reminder: Section attendance and participation 
forms part of your course grade. (Also, if you don’t 
have a section, none of your work will be graded!)

● Reminder: We don’t look to Axess enrollments; you 
need to have a section assigned through our system.



  

Late Policy
● Everyone has four free “late days” that 

can be used to extend assignment 
deadlines.

● Each late day grants an automagic 24-
hour extension on an assignment.

● You can use at most two late days per 
assignment; nothing will be accepted more 
than 48 hours after the normal deadline.

● Check the syllabus for more information.



  

Assignment Grading
● Your coding assignments are graded on both functionality and on 

coding style.
● The functionality score is based on correctness.

● Do your programs produce the correct output?
● Do they work on all inputs?
● etc.

● The style score is based on how well your program is written.
● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

● We have a style guide up the course website, as well as a pre-submit 
checklist to make sure everything is ready to go before you formally 
submit. Check these out – they’re very useful!



  

▶



  

Set



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.
Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
 

values -= 106;
values -= 103; // Has no effect

137

42

271



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

● You may find it helpful to 
interpret += as “ensure 
this item is there” and -= 
as “ensure this item isn’t 
there.”

137

42

271



  

Set

● Sets make it easy to 
check if you’ve seen 
something before.

● You can loop over the 
contents of a set with a 
range-based for loop.
if (values.contains(137)) {
    cout << "<(^_^)>" << endl;
}

for (int value: values) {
    cout << value << endl;
}

137

42

271



  

Operations on Sets
● You can add a value to a Set by writing

set += value;
● You can remove a value from a Set by writing

set -= value;
● You can check if a value exists in a Set by writing

set.contains(value)
● Many more operations are available (union, 

intersection, difference, subset, etc.). Check the 
Stanford C++ Library Reference guide for 
details!



  

Application: Word Economy
● Some long words are use few distinct 

letters.
● “caracara” has length eight, but only uses the 

letters c, r, and a.
● The character efficiency of a word is the 

ratio of its length to the number of different 
letters it contains.
● “caracara” has efficiency ⁸/₃ ≈ 2.67.

● What is the highest-efficiency English word?



  

Map



  

Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

cout << heights["Chile"] << endl;

Serbia

UAE

Chile

153

828

300

Keys Values



  

Map
● We can loop over 

the keys in a map 
with a range-
based for loop.

● We can check 
whether a key is 
present in the 
map.

for (string key: heights) {
   cout << heights[key] << endl;
}

if (heights.containsKey("Mali") {
   cout << "BCEAO" << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values



  

What’d I Say?
● Our program will prompt the user to 

repeatedly type in text.
● Each time, we’ll report how many 

previous times the user has typed in that 
text.

● We’ll use a Map to track frequencies!



  

Map Autoinsertion
● If you look up 

something in a Map using 
square brackets,
● if the key already exists, 

its associated value is 
returned; and

● if the key doesn’t exist, 
it’s added in with a 
“sensible default” value, 
and that value is then 
returned.

● This can take some 
getting used to, but it’s 
surprisingly convenient.

Type Default

int 0

double 0.0

bool false

string ""

Any Container Empty container
of that type

char (it's
complicated)



  

Grouping by First Letters



  

Grouping by First Letters

atlatl

axolotl

…

ballista

barrista

creche

ceviche

…

…

A

B

C



  

Your Action Items
● Read Chapter 5.

● It’s all about container types, and it’ll fill in any 
remaining gaps from this week.

● Read the Style Guide
● Coding style is important! We want to be clear 

with our expectations.
● Keep Working on Assignment 1.

● If you’re following our recommended timetable, 
you’ll have finished Debugger Warmups and Fire 
at this point and will be working on Only Connect.



  

Next Time
● Stacks and Queues

● Specialized containers for specialized 
sequences.

● Applications to text analysis and music.
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